How Black Holes Help Shape Their Galaxies [Video]

http://bcove.me/58essu3z


Astrophysicist and author Caleb Scharf talks about his article "The Benevolence of Black Holes," in the August issue of Scientific American

Image: Scientific American

Black holes don't just pull stuff in—they also give back. In "The Benevolence of Black Holes," adapted from his new book Gravity's Engines, Caleb Scharf of Columbia University explains how these cosmic heavyweights shape the structures around them by spewing matter and radiation outward. In the video below, Scharf talks about some of the ways a black hole can influence its surroundings.


Implantable Devices Could Detect and Halt Epileptic Seizures

Electrical stimulation, brain "cooling" and drug-delivery devices are all being developed as antiseizure tools

epilepsy,seizure,implant,brain STIMULATING: A new generation of implantable "closed-loop" devices are designed to monitor the seizure focus, detect patterns of electrical activity that indicate a seizure is beginning, and quickly respond without external intervention. Image: Courtesy of Henrik Jonsson, via iStockphoto.com

More In This Article

Epilepsy affects some 2.7 million Americans—more than Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis (Lou Gehrig's disease) combined. More than half of patients can achieve seizure control with treatment, yet almost a third of people with epilepsy have a refractory form of the disease that does not respond well to existing antiepileptic drugs. Nor are these patients typically helped by the one implanted device—Cyberonics' Vagus Nerve Stimulator (VNS)—that has had U.S. Food and Drug Administration approval for treatment of epilepsy since 1997.

Because epilepsy causes repeated, sudden seizures, people with the condition would benefit greatly from a therapy that can detect seizures just as they are starting or, eventually, predict them before they begin and prevent them from happening. A new generation of implantable devices is looking to pick up where medications—and even the VNS—often leave off, at least for people whose seizures routinely begin in one part of the brain (the seizure focus). "Closed-loop" devices are designed to monitor the seizure focus, detect patterns of electrical activity that indicate a seizure is beginning, and quickly respond without external intervention. Such responses could include electrical stimulation, cooling or focused drug delivery—all meant to interrupt the activity and stop the seizure.

Closed-loop devices are considered a new frontier in epilepsy treatment because of their responsiveness. By comparison, the VNS is an open-loop device that stimulates the vagus nerve—a pair of nerves running from the brain stem to the abdomen—to deliver mild electrical pulses (which mitigate the electrical activity of seizures) to the brain on a consistent schedule rather than in response to detected seizure activity. The concept of a closed-loop device for epilepsy comes out of the cardiac world, jumping off from implanted defibrillators that monitor the heart and deliver stimulation in response to an event.

Responsive neurostimulation
So far, only one closed-loop device has reached human trials: NeuroPace's Responsive Neurostimulation System (RNS), an electrical-stimulation implant with two leads, each containing four electrodes, placed in the brain at the seizure focus. The RNS detects electrical activity that denotes the start of a seizure and delivers direct electrical stimulation to interrupt the activity and normalize the area. The device is surgically positioned in a section of the skull, can be accessed via outpatient surgery when the battery has to be changed, and is imperceptible to the patient and others—all strong design advantages for patients and doctors. The implant, which is now seeking FDA approval, also records information on electrical activity in the brain throughout the day for later review. The RNS has a laptop-based wand interface for remote patient monitoring.

Results of the RNS trials, which tested the implant in conjunction with medications, have been mixed: seizure frequency was reduced by about half in approximately 50 percent of patients. "For a patient to go though permanent implanting of the device on the skull, and electrodes over the brain, which is what is needed for RNS, you'd want it to eliminate most or all seizures, which isn't the result in most patients," says John Miller, director of the University of Washington School of Medicine's Regional Epilepsy Center at Harborview in Seattle. Possible ways to improve the device's effectiveness, Miller says, could include refining patient selection, improving electrode placement or honing the RNS's detection process so that it can pick up seizure activity earlier.

Work in closed-loop electrical stimulation is also happening at Boston’s Center for Integration of Medicine and Innovative Technology, where researchers are effectively attempting to turn the VNS into a closed-loop device by developing a nonimplanted add-on system to detect early seizure activity and automatically fire the VNS in response. The VNS comes with a therapy magnet wristband that allows wearers to stimulate the device if they feel a seizure coming on (a sensation called an aura), but not everyone is physically able to do so once the aura begins. The CIMIT system automates the process, activating the VNS once the start of a seizure is detected through electroencephalogram and electrocardiogram readings.

Cool it
Another key area of closed-loop research is focal cooling. Here, an implant—after detecting the onset of a seizure by sensing a rise in brain temperature at the seizure focus, which may slightly precede the start of abnormal electrical activity—rapidly cools the involved region to halt the event. The warming associated with the seizure focus makes thermal detection and cooling a potentially promising technique. One center of focal cooling research is the University of Kansas Medical Center, where Ivan Osorio, professor of neurology, has collaborated with an international research partnership to design a prototype implant with funding from the U.S. Department of Energy. Work on cooling is also in progress at other sites, including Yale University and the University of Minnesota.

Quantum Teleportation Achieved over Record Distances

Quantum Teleportation Achieved over Record Distances-NOW TO STARS?


ShareShare ShareEmail PrintPrint



Telescope used in teleportation experiments

The European Space Agency's Optical Ground Station on Tenerife in the Canary Islands was used as a receiver in recent quantum teleportation experiments. Credit: ESA

Two teams of researchers have extended the reach of quantum teleportation to unprecedented lengths, roughly equivalent to the distance between New York City and Philadelphia. But don’t expect teleportation stations to replace airports or train terminals—the teleportation scheme shifts only the quantum state of a single photon. And although part of the transfer happens instantaneously, the steps required to read out the teleported quantum state ensure that no information can be communicated faster than the speed of light.

Quantum teleportation relies on the phenomenon of entanglement, through which quantum particles share a fragile, invisible link across space. Two entangled photons, for instance, can have correlated, opposite polarization states—if one photon is vertically polarized, for instance, the other must be horizontally polarized. But, thanks to the intricacies of quantum mechanics, each photon’s specific polarization remains undecided until one of them is measured. At that instant the other photon’s polarization snaps into its opposing orientation, even if many kilometers have come between the entangled pair.

An entangled photon pair serves as the intermediary in the standard teleportation scheme. Say Alice wants to teleport the quantum state of a photon to Bob. First she takes one member of a pair of entangled photons, and Bob takes the other. Then Alice lets her entangled photon interfere with the photon to be teleported and performs a polarization measurement whose outcome depends on the quantum state of both of her particles.

Because of the link between Alice and Bob forged by entanglement, Bob’s photon instantly feels the effect of the measurement made by Alice. Bob’s photon assumes the quantum state of Alice’s original photon, but in a sort of garbled form. Bob cannot recover the quantum state Alice wanted to teleport until he reverses that garbling by tweaking his photon in a way that depends on the outcome of Alice’s measurement. So he must await word from Alice about how to complete the teleportation—and that word cannot travel faster than the speed of light. That restriction ensures that teleported information obeys the cosmic speed limit.

Even though teleportation does not allow superluminal communication, it does provide a detour around another physics blockade known as the no-cloning theorem. That theorem states that one cannot perfectly copy a quantum object to, for instance, send a facsimile to another person. But teleportation does not create a copy per se—it simply shifts the quantum information from one place to another, destroying the original in the process.

Teleportation can also securely transmit quantum information even when Alice does not know where Bob is. Bob can take his entangled particle wherever he pleases, and Alice can broadcast her instructions for how to ungarble the teleported state over whatever conventional channels—radio waves, the Internet—she pleases. That information would be useless to an eavesdropper without an entangled link to Alice.

Physicists note that quantum entanglement and teleportation could one day form the backbone of quantum channels linking hypothetical quantum processors or enabling secure communications between distant parties. But for now the phenomenon of teleportation is in the gee-whiz exploratory phase, with various groups of physicists devising new tests to push the limits of what is experimentally possible.

In the August 9 issue of Nature, a Chinese group reports achieving quantum teleportation across Qinghai Lake in China, a distance of 97 kilometers. (Scientific American is part of Nature Publishing Group.) That distance surpasses the previous record, set by a group that included several of the same researchers, of 16 kilometers.

But a more recent study seems to have pushed the bar even higher. In a paper posted May 17 to the physics preprint Web site arXiv.org, just eight days after the Chinese group announced their achievement on the same Web site, a European and Canadian group claims to have teleported information from one of the Canary Islands to another, 143 kilometers away. That paper has not been peer-reviewed but comes from a very reputable research group.

Both teams of physicists faced serious experimental challenges—sending a single photon 100 kilometers and then plucking it out of the air is no easy task. In practical terms, both groups’ Alices and Bobs needed laser-locked telescopes for sending and receiving their photons, as well as complex optics for modifying and measuring the photons’ quantum states.

But that’s nothing compared to what the physicists have in mind for future experiments. Both research groups note that their work is a step toward future space-based teleportation, in which quantum information would be beamed from the ground to an orbiting satellite.

About the Author: John Matson is an associate editor at Scientific American focusing on space, physics and mathematics. Follow on Twitter @jmtsn.