energy from ocean currents

15-Year-Old Girl Becomes 'America's Top Young Scientist'
Washington:  A 15-year-old US girl was crowned "America's Top Young Scientist" for creating an innovative prototype to help developing countries tap , a contest which had five Indian-American teens among the finalists.

Hannah Herbst was named winner of the 2015 Discovery Education 3M Young Scientist Challenge for creating a prototype that seeks to offer a stable power of source to developing countries by using untapped energy from ocean currents, local media reported.

The award includes USD 25,000 and a student adventure trip to a destination such as Costa Rica.

Herbst, a ninth grader from Florida Atlantic University High School, competed alongside nine other middle school finalists on Tuesday during a live competition at the 3M Innovation Centre in St Paul, Minnesota.

Herbst said the idea for this innovation dawned upon her during conversations with a nine-year-old friend who lives in Ethiopia in northwest Africa, where infrequent and unstable power supply poses a major challenge, according to the local media.

Among the 10 finalists were five Indian-American - Raghav Ganesh, Krishna Shetty, Sanjana Shah, Iris Gupta and Amulya Garimella.

The finalists are judged on their scientific problem solving, innovation and ingenuity, and communication skills.

Last year, Indian-American Sahil Doshi, a ninth grader from Pittsburg, had won the competition for his innovative design of an eco-friendly device that seeks to reduce carbon footprint while offering power for household usage.

Robo-Car will it work in India ?


https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTNYT1Qbyi1JLX2vjQ73LV-k1qUDmBUwZHhZAN4sa14T2gQYqFs

Image result for very crowded narrow indian roads

Group of Indian Street Dogs Gathered On Road Around Luxury Car And ...

www.youtube.com

Group of Indian Street Dogs Gathered On Road Around Luxury Car And Barking At Car Owner


Google’s Lame Demo Shows Us How Far Its Robo-Car Has Come

Gallery Image




The fact Google invited journalists to ride around a rooftop parking lot didn’t make the car seem any cooler.
The ride was more carefully choreographed than a Taylor Swift concert. I pressed the the big black “Go” button, and the car rolled away with a whir. It made a few turns, and maxed out at around 15 mph. A Google employee stepped in front of me, and the car slowed and let him continue on his way unhindered. A car pulled up alongside me, and the Google Car slowed to ensure we didn’t collide. Then a cyclist made a similar move, and the car responded in a similar fashion. I saw the car make the exact same trip 10 times in all.
Look past the econobox styling and appointments of the car and the boring drive around that parking look, though, and you can see just how far Google has come in its quest to make drivers irrelevant—and how far ahead of the competition it is.

Killing the Driver

Google has been developing this technology for six years, and is taking a distinctly different approach than everyone else. Conventional automakers are rolling out features piecemeal, over the course of many years, starting with active safety features like automatic braking and lane departure warnings.
Google doesn’t give a hoot about anything less than a completely autonomous vehicle, one that reduces “driving” to little more than getting in, typing in a destination, and enjoying the ride. It wants a consumer-ready product ready in four years.
This is how good human drivers think. And the cars have the added advantage of better vision, quicker processing times, and the inability to get distracted, or tired, or drunk, or angry.
The Silicon Valley juggernaut is making rapid progress. Its fleet of modified Lexus SUVs and prototypes has racked up 1.2 million autonomous miles on public roads, and covers 10,000 more each week. Most of that has been done in Mountain View, and Google expanded its testing to Austin last summer.
It’s unclear how this technology will reach consumers, but Google is more likely to sell its software than manufacture its own cars. At the very least, it won’t sell this dinky prototype to the public.

Predicting the Future

As the Google car moves, its laser, camera, and radar systems constantly scan the environment around it, 360 degrees and up to 200 yards away.
“We look at the world around us, and we detect objects in the scene, we categorize them as different types,” says Dmitri Dolgov, the project’s chief engineer. The car knows the difference between people, cyclists, cars, trucks, ambulances, cones, and more. Based on those categories and its surroundings, it anticipates what they’re likely to do.
Making those predictions is likely the most crucial work the team is doing, and it’s based on the huge amount of time the cars have spent dealing with the real world. Anything one car sees is shared with every other car, and nothing is forgotten. From that data, the team builds probabilistic models for the cars to follow.
“All the miles we’ve driven and all the data that we’ve collected allowed us to build very accurate models of how different types of objects behave,” Dolgov says. “We know what to expect from pedestrians, from cyclists, from cars.”
Those are the key learnings the test drive on the roof parking lot was meant to show off. If I may anthropomorphize: The car spotted a person on foot walking near its route and figured, “You’re probably going to jaywalk.” It saw a car coming up quickly from left and thought, “There’s a good chance you’re going to keep going and cut me off.” When the cyclist in front put his left arm out, the car understood that as a turn signal.
This is how good human drivers think. And the cars have the added advantage of better vision, quicker processing times, and the inability to get distracted, or tired, or drunk, or angry.

Detecting Anomalies

The great challenge of making a car without a steering wheel a human can grab is that the car must be able to handle every situation it encounters. Google acknowledges there’s no way to anticipate and model for every situation. So the team created what it calls “anomaly detection.”
If the cars see behavior or an object they can’t categorize, “they understand their own limitations,” Dolgov says. “They understand that there’s something really crazy going on and they might not be able to make really good, confident predictions about the future. So they take a very conservative approach.”
One of Google’s cars once encountered a woman in a wheelchair, armed with a broom, chasing a turkey. Seriously. Unsurprisingly, this was a first for the car. So the car did what a good human driver would have done. It slowed down, Dolgov says, and let the situation play out. Then it went along its way. Unlike a human, though, it did not make a video and post it on Instagram.

New robotic finger feels and works like real thing

Business Standard - ‎17 hours ago‎
Inspired by both nature and biology, scientists have designed a novel robotic finger that looks, feels and works like the real thing and could be adapted for use in a prosthetic hand.
 
comment:- one more step in the direction of virtual reality on computers 

Predictions made by Ray Kurzweil - Wikipedia, the free ...Video for kurzweil virtual reality sex

.. 
in which a human can have sex with a ..
 
 

 will be more popular with ROBOTS than with humans ...

www.mirror.co.uk › News › Technology & Science › Robots
Sep 30, 2015 - In just 35 years, more humans will be having sex with robots than with each other, according to futurologist Dr. Ian Pearson.

By 2050, human-on-robot  will be more common than ...

www.telegraph.co.uk › Technology › Technology News
Sep 29, 2015 - Can you imagine having sex with a humanoid robot? Apparently, this will be the norm in a few short decades. Futurologist Dr Ian Pearson has ...